Search results for "Courant–Friedrichs–Lewy condition"
showing 5 items of 5 documents
Efficient parallel computations of flows of arbitrary fluids for all regimes of Reynolds, Mach and Grashof numbers
2002
This paper presents a unified numerical method able to address a wide class of fluid flow problems of engineering interest. Arbitrary fluids are treated specifying totally arbitrary equations of state, either in analytical form or through look‐up tables. The most general system of the unsteady Navier–Stokes equations is integrated with a coupled implicit preconditioned method. The method can stand infinite CFL number and shows the efficiency of a quasi‐Newton method independent of the multi‐block partitioning on parallel machines. Computed test cases ranging from inviscid hydrodynamics, to natural convection loops of liquid metals, and to supersonic gasdynamics, show a solution efficiency i…
MAST solution of advection problems in irrotational flow fields
2007
Abstract A new numerical–analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the so…
A Positive Definite Advection Scheme for Use in Long Range Transport Models: Extension to Monotonicity
1992
Numerical modeling of atmospheric transport processes requires the solution of the continuity equation for prognostic variables such as momentum, heat, water vapor, liquid water or chemical species of the atmosphere. Although in the literature many advection schemes are known to solve this problem (Lax and Wendroff 1964, Crowley 1968, Tremback et al. 1987, Bott 1989a,b), these algorithms show different disadvantages, which sometimes yield undesirably poor numerical results. For instance, the upstream method is known to produce large numerical diffusion. The higher order versions of the advection schemes of Tremback et al. (1987) are much less diffusive. Unfortunately, the schemes are not po…
A new algorithm for a robust solution of the fully dynamic Saint-Venant equations
2003
A new procedure for the numerical solution of the fully dynamic shallow water equations is presented. The procedure is a fractional step methodology where the original system is split into two sequential ones. The first system differs from the original one because of the head gradient term, that is treated as constant and equal to the value computed at the end of the previous time step. The solution of this system, called kinematic, is computed in each element using a spatial zero order approximation for both the heads and the flow rates by means of integration of single ODEs. The second system is called diffusive, contains in the momentum equations only the complementary terms and can be e…
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
2011
Abstract A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains t…